17/5/2

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Fral pas B. Tell (main) Sem (

END SEMESTER - EVEN SEM - MAY 2022

Program: B.Tech. in Mechanical Engg.

Duration: 3 Hour

Course Code: PE-BTM711

Max. Points: 100

Course Name: Process Equipment Design & Piping Engineering

Semester: VIII

Notes:

1. Question no. 1 is compulsory. Solve any 4 of the remaining 6 questions.

2. Refer annexure for additional information. Assume suitable data if necessary.

3. 'x' is the single last digit (0 to 9) of student's registration no. in questions marked with *.

Q. No.	Questions	Points	СО	BL	PI
COMPULSORY	 A) Discuss various considerations which an engineer must consider while preparing a material ordering specification. Apply these considerations to develop a specification for an 80 thick carbon steel plate which will be used to hot roll shells of 2000 mm inside diameter and 20 meters total length for a critical vessel. The vessel will be occasionally exposed to very low temperatures. B) * A pressure vessel has a hemispherical dished end of inside diameter (2000 + 10 × x) mm and 40 mm minimum thickness. Calculate the MAWP of the dished end. Weld joint efficiency is 0.9, corrosion allowance is 3 mm, allowable stress is 100 MPa and hot forming allowance is 4 mm. 	(5)	2	3	2.4.2
	C) You along with your team members have performed the finite element method based stress analysis of certain discontinuity regions of a pressure vessel using ASME code. Describe the steps taken by you to perform the plastic collapse check at the discontinuities. Recommend 3 guidelines for future teams, based on your experience which will reduce the efforts and time to perform such an analysis. D) * A 550 NB process pipe is subjected to internal design pressure of (2.5 + 0.1 × x) MPa and has a design temperature of 525°C. The pipe material is seamless carbon steel with allowable stress of 35 MPa. Corrosion allowance is 3 mm. Factor W = 1.0 for T < 510°C and W = 0.5 for T > 815°C. Calculate required schedule of the pipe.	(5)	3	3	3.2.3 2.1.3
Q2	A) Describe the significance of process diagrams BFD, PFD, and P&ID in the design of a process plant. Explain any 3 guidelines for the development of a good plant layout.	(5)	1	3	2.1.3
	B) * A carbon steel reactor vessel has a shell of $(1200 + 10 \times x)$ mm inside diameter, 't' thickness, and 5000 mm unsupported length. The	(10)	3	4	3.2.2

	shell is subjected to external pressure of 0.10 MPa at 370° C due to process conditions. Calculate the required thickness 't' of the shell. Also, calculate the size of the stiffeners. Corrosion allowance is zero. C) Describe different types of flanges and flange facings with a neat sketch. Recommend suitable applications for each type of flange/facing.	(5)	2	2	2.1.2	
Q3	A) * Design a flange with a flat face as per the following data. Design pressure = (3 + 0.1 × x) MPa Allowable flange stress = 250 MPa Allowable bolt stress: operating = 180 MPa, gasket seating condition = 200 MPa B) * Figure shows pipeline ABCDE connecting two process equip-	(10)	3	4	2.4.2	
	ment.	(= 9)		7	2.7.1	
	E 25 m C (100x3) m (25+x) m					
	 Design data is as follows. Pipe size: 500 NB sch STD; Pipe material: SA106 Gr B; Elbows: SR type Allowable stress (cold/hot) = 130/120 MPa; Modulus of elasticity = 200,000 MPa, Corrosion allowance = nil Thermal expansion at operating temperature = 2.5 mm/m Suggested maximum span between supports = (40+x) m Displacement at point A in x,y,z directions = +1, -1, +1 mm Displacement at point E in x,y,z directions = 0, 0, 0 mm (i) Write a short note on different types of piping supports and guidelines to locate these. 					
	 (ii) Select suitable locations for support H1, H2, and H3. (iii) Check the need for performing flexibility analysis. Consider factor K1 = 208300S_A/E_a 					

			- (=)		2	2.1.2
)4 A	A) The 'Piping Material Specification'	is issued by EPC for a specific	(5)	4	2	2.1.2
	project Discuss the contents of this	s document. How is this docu-	•			
	ment used during the design phase of	of a project?		1		
- 11	D) Explain the importance of the follow	ving terms in the design of pies-	(5)	2	2	2.1.2
1	sure equipment: (i) Design pressure.	(11) MDM1, (111) Corrosion al-		1		
	lawance (iv) Weld joint efficiency.	(v) Gasket factors m and y.				
- 1	() * Design skirt support for a vertical	vessel with the data given be-	(10)	3	4	3.1.6
	low. Determine the thickness of the	skirt and base plate.	` ,			
1	Vessel ID = $(2000 + 10 \times x)$ mm	Permissible stress, skirt =		1		
	Vessel thickness = 12 mm	150 MPa (tension), 75				
	Skirt ID = $(2000 + 10 \times x)$ mm	MPa (compression)				
	Total height of vessel = $(40+x)$ m	Permissible bending stress,				
	1 otal neight of vesser – (40 x) iii	base plate = 140 MPa		1		
	- 1 - 2000 kN					
	Operating weight of vessel = 3000 kN	180 MPa				
	2 1 2500131	Permissible compressive				
	Empty weight of vessel = 2500 kN	stress, foundation = 20				
1		1				
	2	MPa				
	Wind pressure, $H>20m = 1800 \text{ N/m}^2$	Seismic factor, C = 0.12				
j.	Wind pressure, $H<20m = 900 \text{ N/m}^2$					
J	IT III PLOUDELY,					
25	A) * A cylindrical vessel of 2000 mm	n ID is subjected to an internal	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm	n ID is subjected to an internal Design the reinforcing pad for a	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm	design the reinforcing pad for a	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. Do nozzle fabricated from plate with the	Design the reinforcing pad for a ne ollowing data. The nozzle axis	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. D nozzle fabricated from plate with the makes an angle of $(60 + x)^{\circ}$ with the	Design the reinforcing pad for a ne ollowing data. The nozzle axis the axis of shell.	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. Do nozzle fabricated from plate with the makes an angle of $(60 + x)^{\circ}$ with the linear late of nozzle = 500 mm.	Design the reinforcing pad for a ne ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. D nozzle fabricated from plate with the makes an angle of $(60 + x)^{\circ}$ with the linear lin	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. Do nozzle fabricated from plate with the makes an angle of $(60 + x)^\circ$ with the linear line	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The property of the control of the cont	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. Do nozzle fabricated from plate with the makes an angle of $(60 + x)^{\circ}$ with the linear late. Of nozzle = 500 mm Normal late. Thickness of vessel = calculate and round to the nearest even in-	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of $(3 + 0.1 \times x)$ MPa. Do nozzle fabricated from plate with the makes an angle of $(60 + x)^{\circ}$ with the linear late. Of nozzle = 500 mm length of the late and round to the nearest even integer.	Design the reinforcing pad for a ne ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m ermissible stress for shell and ozzle = 100 MPa	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with th makes an angle of (60 + x)° with t Internal dia. of nozzle = 500 mm Thickness of vessel = calculate and round to the nearest even in- teger Thk. of noz. wall = calculate and Co	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The property of the control of the cont	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with th makes an angle of (60 + x)° with t Internal dia. of nozzle = 500 mm Thickness of vessel = calculate and round to the nearest even integer Thk. of noz. wall = calculate and round to the nearest even integer	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m ermissible stress for shell and ozzle = 100 MPa orrosion allowance = 1 mm	(10)	2	3	2.4.2
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes and the makes and the makes and the makes and the makes an angle of (60 + x)° with the makes and	design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. oz. height above vessel = 200 m ermissible stress for shell and ozzle = 100 MPa orrosion allowance = 1 mm 8.3 mm OD, 10.97 mm nominal		2	3	
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with th makes an angle of (60 + x)° with to Internal dia. of nozzle = 500 mm Thickness of vessel = calculate and round to the nearest even integer Thk. of noz. wall = calculate and round to the nearest even integer B) * A 150 NB SCH 80 pipeline (16) wall thickness) has an equivalent	design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. oz. height above vessel = 200 m ermissible stress for shell and ozzle = 100 MPa orrosion allowance = 1 mm 8.3 mm OD, 10.97 mm nominal length of (100 + 10 × x) m for	(10)			
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with th makes an angle of (60 + x)° with to Internal dia. of nozzle = 500 mm Thickness of vessel = calculate and round to the nearest even integer Thk. of noz. wall = calculate and round to the nearest even integer B) * A 150 NB SCH 80 pipeline (16) wall thickness) has an equivalent the purpose of pressure drop calculate.	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m Example 200 m Examp	(5)			
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the second from the makes and surface restricted in the purpose of pressure drop calculate and the purpose of pressure drop calculate and the purpose of pressure drop calculate and surface roughness of 0.06 mm	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the nozzle axis the axis of shell. The ozzle axis the axis of shell.	(5)			
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with th makes an angle of (60 + x)° with to Internal dia. of nozzle = 500 mm Thickness of vessel = calculate and round to the nearest even integer Thk. of noz. wall = calculate and round to the nearest even integer B) * A 150 NB SCH 80 pipeline (16) wall thickness) has an equivalent the purpose of pressure drop calculate has a surface roughness of 0.06 mm pipeline has a density of (750 + 1)	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m Example of the examp	(5)		3	
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with th makes an angle of (60 + x)° with to Internal dia. of nozzle = 500 mm Thickness of vessel = calculate and round to the nearest even integer Thk. of noz. wall = calculate and round to the nearest even integer B) * A 150 NB SCH 80 pipeline (16) wall thickness) has an equivalent the purpose of pressure drop calculate has a surface roughness of 0.06 mm pipeline has a density of (750 + 1)	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m Example of the examp	(5)			
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes and mass flow rate of 2000 mm. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer.	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m Example of the examp	(5)			
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes and makes all the perpose of vessel = calculate and round to the nearest even integer Thickness of vessel = calculate and round to the nearest even integer Thickness of vessel = calculate and round to the nearest even integer B) * A 150 NB SCH 80 pipeline (160 wall thickness) has an equivalent the purpose of pressure drop calculate and as a surface roughness of 0.06 mm pipeline has a density of (750 + 1 and mass flow rate of 100,000 kg inside the pipeline.	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The ozzle axis the axis of shell. The properties of the control of	(5)		3	2.3.1
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the line of nozzle = 500 mm. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer.	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m Example of the examp	(5)	4	3	2.3.1
Q5	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the second form. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer.	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The ozzle axis the axis of shell. The nozzle axis the axis of shell. The nozzle axis the axis of shell. The rimissible stress for shell and ozzle = 100 MPa The orrosion allowance = 1 mm The fluid flowing through the ulations. The pipe inside surface m. The fluid flowing through the $0 \times x$ kg/m³, viscosity of 1.4 cPg/hr. Calculate the pressure drop things that are commonly used in Explain end types for the fittings	(5)	4	3	2.3.1
	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. D nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the second from the makes of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round r	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The ozzle axis the axis of shell. The nozzle axis the axis of shell. The nozzle axis the axis of shell. The axis of shell. The remissible stress for shell and ozzle = 100 MPa The remissible stress for she	(5)	4	2	2.1
	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the second from the maxest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round	Design the reinforcing pad for a ne ollowing data. The nozzle axis the axis of shell. Oz. height above vessel = 200 m ermissible stress for shell and ozzle = 100 MPa orrosion allowance = 1 mm 8.3 mm OD, 10.97 mm nominal length of $(100 + 10 \times x)$ m for ulations. The pipe inside surface m. The fluid flowing through the $0 \times x$ kg/m³, viscosity of 1.4 cPg/hr. Calculate the pressure drop things that are commonly used in Explain end types for the fittings type for specific applications.	(5)	4	2	2.1
	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round r	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The ozzle axis of shell. The axis of shell. The nozzle axis the axis of shell. The axis of shell. The grain and the axis of shell and ozzle = 100 MPa The fluid flowance = 1 mm The fluid flowing through the $0 \times x$ kg/m³, viscosity of 1.4 cP g/hr. Calculate the pressure drop attings that are commonly used in Explain end types for the fittings type for specific applications. The fluid flowing through the grain are commonly used in the axis of the fittings are applications. The fluid flowing through the grain end types for the fittings are applications. The fluid flowing through the grain end types for the fittings are applications. The fluid flowing through the grain end types for the fittings are applications.	(5)	4	2	2.3.1
Q5 Q6	A) * A cylindrical vessel of 2000 mm pressure of (3 + 0.1 × x) MPa. Do nozzle fabricated from plate with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the makes an angle of (60 + x)° with the second from the maxest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round round to the nearest even integer. Thickness of vessel = calculate and round	Design the reinforcing pad for a me ollowing data. The nozzle axis the axis of shell. The ozzle axis the axis of shell. The nozzle axis the axis of shell. The nozzle axis the axis of shell. The control of the control of the axis of shell. The control of the control of the axis of the axis of shell and ozzle = 100 MPa The control of the control of the axis o	(5)	4	2	2.4.2

 which such a project will progress completion. Highlight the role organization in these phases. B) The radial deformation w of a section of cylinder subjected to expressure is obtained as follows. w = A sin qθ + B cos qθ + where K is constant and q² = (1) Apply the symmetry be conditions and prove that the buckling pressure is given by 3E/73 	of EPC quarter external $K \\ + \frac{pr_0^3}{EI})$ oundary critical	(5)	2	4	2.4.1
C) * A single pass fixed-tubesheet ification. Number of tubes = (300 + 10 × x) Tube side design pressure = 2.0 MPa Pitch = triangular Allowable stress (shell/tube) = 100 MPa Determine the thickness of the stress of the st	Outside dia. of tubes = 20 mm Shell side design pressure = 0.5 MPa Corrosion allowance = nil Tubesheet design factor, F = 1.0 ne tubesheet. Describe the design	(10)	3	4	2.4.1
Q7 A) The process equipment are sub which need to be addressed differences in the nature of thes	jected to different types of loadings uring the design stage. Discuss the loadings.	(5)	1	2	2.1.2
B) Explain the role played by fabr	ication processes and the inspection sign of pressure equipment.	(5)	1	2	2.1.2
C) Discuss the purpose of piping	flexibility analysis and explain the lology prescribed by design code for terms: (i) flexibility factor, (ii) stress	(5)	4	2	2.1.2
D) * Select a variable spring supp	ort from the catalogue (Annexure I) load is $(600 + 10 \times x)$ N and the m downwards.	(5)	4	3	2.3.1

ANNEXURE I

Pipe Schedule

NPS inches	N.D.	O.D.	10	20		STD			хs	80	100	120	140	160
20	500	508	6.35	9.53	12.70	9.52	15.08	20.62	12.7	26.19	32.54	38.1	44.45	50.01
					12.70				12.7	28.57	34.92	41.27	47.62	53.97
24	600	609.6	6.35	9.53	12.70	9.52	17.47	24.61	12.7	30.96	38.89	46.02	52.37	59.54

Factor Y

		Temperature, °C (°F)							
Materials	≤ 482 (900 & Lower)	510 (950)	538 (1000)	566 (1050)	593 (1100)	≥ 621 (1150 & Up)			
Ferritic steels	0.4	0.5	0.7	0.7	0.7	0.7			
Austenitic steels	0.4	0.4	0.4	0.4	0.5	0.7			

Useful expressions for tubesheet design

$$D_{bundle} \approx d_0 (\frac{N_t}{0.319})^{1/2.142}$$

Useful expressions for support skirt design against wind and seismic load

 $T=6.35\times 10^{-5}(H/D)^{1.5}(W/t)^{0.5}$ where W is in kN; wind load $P=k_1k_2pHD_0$, wind shape factor k_1 =0.7 to 0.85, wind factor related to period, k_2 = 1 if T<0.5 sec, else k_2 = 2

Flange Design:

$$\frac{d_o}{d_i} = \sqrt{\frac{y - pm}{y - p(m + 1)}} \, ; \; W_{m1} = \frac{\pi}{4} G^2 p + 2 b \pi G m p \, ; \; W_{m2} = \pi b G y \, ; \, t = 0.72 \sqrt{\frac{MY}{B f_{allow}}}$$

$$Y = \frac{1}{K-1} \left[0.66845 + 5.71690 \frac{K^2 \log_{10} K}{K^2 - 1} \right] , K = A/B$$

Pressure Drop Calculations

Colebrook White equation:
$$\frac{1}{\sqrt{f_D}} = -2 \log_{10} \left(\frac{e}{3.7D} + \frac{2.51}{R_e \sqrt{f_D}} \right)$$

Variable Spring Support Catalogue

	Series		Hanger size						
VS3	VS2	VS1	0	1	2	3	4	5	€
Tra	avel in m	m	Load Capac	ity in Kgs.				est a trata de la trata de la constantidad de la co	
20	10	5	11.12	19.68	25.33	32.45	44.45	59.2	78.5
12	6	3	11.77	20.83	26.9	34.59	47.27	63	83.5
4	2	1	12.42	21.98	28.47	36.73	50.09	66.7	88.5
0	0	0	12.74	22.56	29.26	37.8	51.5	68.6	91
8	4	2	13.39	23.71	30.83	39.94	54.32	72.4	96
16	8	4	14.04	24.86	32.4	42.08	57.14	76.1	101
24	12	6	14.68	26.01	33.97	44.22	59.96	79.9	106
32	16	8	15.33	27.16	35.54	46.36	62.78	83.6	111
40	20	10	15.98	28.31	37.11	48.5	65.6	87.4	116
48	24	12	16.63	29.46	38.68	50.64	68.42	91.2	121
56	28	14	17.28	30.61	40.25	52.78	71.24	94.9	126
64	32	16	17.92	31.76	41.82	54.92	74.06	98.7	131
72	36	18	18.57	32.91	43.39	57.06	76.88	102.4	136
80	40	20	19.22	34.06	44.96	59.2	79.7	106.2	141

External pressure design charts for carbon steel

Page **6** of **6**

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem - May 2022 Examinations

Toug & Tay (Mark) Sam VIII

Duration: 3 Hrs

Maximum Points: 100

Semester: VIII

Program: Mechanical

Course Code: BTM 733

Course Name: Industrial Robotics

Notes: Assume suitable data whenever necessary

Johns ans

Q.N.	Questions	Pt	CO	BL	PI
	Explain Automation in detail and the three Laws of	1			
1a	Robotics	10	IV	I	1.4.1
	Describe Artificial Intelligence [AI] and the goal of AI				
	and Robotics. Also define Robot in eight different				
1b	ways.	10	I	II	2.1.1
	Explain Robotic manipulator and discuss the types				
2a	of Grippers with schematic	10	I	II	1.3.1
	Demonstrate Robot Anatomy in detail and Robot				
2b	motions.	10	I	III	1.4.1
3a	Classify the Robots and explain each in brief	10	I	IV	1.4.1
	Explain different types of drives and types of electric				
3b	motors used in robots	10	III	1	1.3.1
	Show different types of sensors used in Robot and				
	discuss the factors which determine work space				
4a	envelop.	10	III	III	1.3.1
	Categorize the types of robots with axes, joints and				
	shape of work space also advantages / disadvantages				
4b	of each.	10	III	IV	1.4.1
5a	Fundamenta anguification of value with procision	10	III	I	1.4.1
	Explain the specification of robot with precision,				
5b	accuracy and encoders	10	TT	¥ 7¥	1 1 1
30	Develop frames {0} to {4} for the shown planar 3R	10	II	VI	1.1.1
	(RRR) robotic manipulator, then find the DH				
	parameters table				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Sem - May 2022 Examinations

	L ₃				
ба	For the shown RPR robotic manipulator, the DH parameters table is defined as shown in figure. Create the transformation matrices ${}_{1}^{0}T$ ${}_{2}^{1}T$ ${}_{3}^{2}T$ ${}_{4}^{3}T$ and find ${}_{4}^{0}T$	10	11	VI	2.4.1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
6b	Generate the jacobian using the static forces / moment method	10	III	VI	2.4.1
7	For the 2R Robot, derive the linear and angular velocities of the tool tip (end effector) based on frames $\{0\}$ and $\{3\}$, then find the jacobian matrix relative to frame $\{0\}$ and $\{3\}$. i α_{i-1} α_{i-1} α_{i} α_{i-1}	20	III	VI	2.4.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

Final Mean SEM EXAMINATION May-2022

Program: B. Tech. in Mechanical Engineering

Class: Final Year B. Tech. (Mechanical)

Course code: BTM 754

Course: Power Plant Engineering

Date: 17 May 2022

Duration: 3 Hr.

Max. Points: 100 Semester: VIII

Instructions:

• Attempt ANY 05 of the following questions.

• Draw neat Process diagrams /T-s Diagrams/ Figures etc.wherever necessary.

 Use Graph paper for drawing Load curve & Load Duration curve, Hydrogrph & Flow Duration Curve

• Legible hand writting, proper figures and tidy work carry weightage.

Answers to the questions should be Brief and Specific.

• Assume suitable data whwerever found necessary and mention the same.

Q. No			Ques	tion			Points	00	BL	Module
1	Reserv	fine: i) Load Factor e factor and Explain struct: Chronologic	n: Significance	e of each plant per	formance para	ameter.	(10)	1,4	I, II	1
	the foll	lowing observation.		T		,				
		Time	Load, kW	Time	Load, kW					
		6 am to 8 am	3000	5 pm to 6 pm	7000					
		8 am to 12 Noon	10000	6 pm to 9 pm	6000					
		12 Noon to 1 pm	5000	9 pm to 11 pm	6000					
		1 pm to 5 pm	10000	11 pm to 6 am	2000					
	If the I	Reserve capacity in	the station is	3000 kW, Evalua	ite: i) Load F	actor ii)	(10)	1,4	III,	1
	Plant C	Capacity Factor. Que	stion						V	
2	A) Exp	olain:Various types	of Hydroelec	tric Power Plants.			(10)	2	II	2
	_	olain: Hydrogrph and particular hydro p					(10)	1,2	II, III	2
	Hydro	graph and Flow dur	ation curve.							

	Month	Discharge,	Month	Discharge,		-			•
		m^3/s		m ³ /s					
	January	200	July	2000					
	February	450	August	2400					
	March	600	September	1800	1				ļ
	April	1200	October	1200					
	May	1500	November	800					
	June	1600	December	400					:
3	A) Compare: Advanta	ges and disadvar	ntages of Diese	l Power Plant	over Gas	(10)	2	V	5
	Turbine Power Plants.								
	B) Following parameter	rs are noted for a	performance	test of a single	cylinder	(10)	2,4	V	5
	four stroke diesel engin	e:- Brake load ap	plied to drum	of 1.8 m diame	ter is 196			V	
	N. Fuel consumption is	0.12 kg/min with	n calorific valu	e of 41870 kJ/	/kg. Total				
	amount of cooling water	r passing through	h the jacket is	540 kg with its	inlet and				
	outlet temperatures as	20 °C and 60	°C respectivel	y. Total amou	int of air				
	consumed is 6.1 kg/min	. The exhaust gas	ses having Cp	= 1.005 kJ/kg.	K leaving				
	the engine cylinder at 3	00 °C are release	d to atmosphe	re at 20 °C. i) I	Evaluate:				
	Brake Power and Thern	nal Efficiency of	the engine. ii)	Estimate: Hea	t Balance				
	of the engine.								
4	A) Discuss: Criterion	for classification	n and State:	Types of Nucle	ar Power	(10)	2	V	4
	Plants based on these cr								
	B) Explain: Working,	advanatagges an	d disadvantag	es of Pressuris	ed Water	(10)	2,4	II	4
	Reactor (PWR) with a r								
5	A) Explain: Working,	adnytages and	disadvanatges	of Modified (Open Gas	(10)	2	I,	5
	Turbine Cycle (OGTC) Plant with reg	generation, into	ercooling and	reheating.			11	
	Draw: a neat ssystem d								
	B) An Open Gas Turbin					(10)	2,4	I,	5
	cycle uses a regenerator						-	V	
	MPa, 30°C with a press	sure rato = 6 and	Maximum Ter	nperature of cy	vcle = 900				
	°C, Assume Compresso	or and Turbine ef	ficiency = 100	%, for working	g medium				
	air, $Cp = 1.005 kJ / kg$	K and $\gamma = 1.4$.	Evaluate: The	rmal Efficiency	of plant.				
	Draw: System diagram	and T-s diagram							
6	A) Explain: Concept of	Fluidized Bed C	ombustion. De	scribe: Arrange	ement and	(10)	2	II,	3
	Working of any one Flu	iidised Bed Comb	oustor with nea	t sketch.				V	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Gral yr. B. Tell (Mey) Som VIII END SEMESTER EXAMINATION MAY 2022 1915/22

Program: Mechanical Engineering

Duration: 3 hour

Course Code: PE-BTM 755

Maximum Points: 100

Course Name: Automobile Engineering

Semester: VIII

INSTRUCTIONS:

1. Attempt any five questions out of six questions.

2. Draw neat schematic diagrams wherever is necessary, highlight important points of answer.

3. Assume suitable data if necessary and mention it.

Q.No.	Questions	Points	co	BL	PI
Q1 A)	A ladder chassis system tested and found to be poor in stability of				
11)	vehicle while steering and moving on grade. Suggest separate solutions to solve these problems using sketch?	10	1	3	1.2.1
	Give classification of buses based on their body shapes?				
	Give working principle of working of flash light indicator with the				
B)	help of neat sketch?	10	3	2	2.1.2
	What are the issues associated with controlled operation of wiper?		4		
Q2	Give working principle of Battery or Coil Ignition System with the				
A)	help of neat sketch?	10	3	1	1.2.2
	Write short note on battery capacity rating?				
D \	Derive final expression for thermal efficiency of diesel air standard				
B)	cycle with the help of necessary P-V and T-S diagram?	10	_		
	With the help of figure give criteria for selecting maximum possible	10	2	1	1.2.1
	range of speed for an automobile, when it's running on the level road?				
Q3	a) Estimate torque transmission capability by a two plate clutch,				
A)	which is having average radius of 15 cm and it is coated using			1	
	organic material (having coefficient of friction as 0.35)? After				
	release of clutch pedal, spring assembly applies 50 N of axial				
	load on the clutch plate.	10	1	3	2.1.1
	Also estimate (all inertia loads are negligible and wheels rides without				
	any slip) tractive effort available at road-tyre interface if $N_{tl} = 0.5$,				
	N _d =0.5, mean wheel radius= 0.2 meters?				
N	b) Obtain expression for maximum tractive effort available in			-	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION MAY 2022

	CC 1 11' and an about drive?				
	case of front wheel drive and rear wheel drive?		,		
B)	Why disk brake performance is more reliable compared to drum brake performance? Explain it with the help of sketch? Define coefficient of friction sensitivity, brake fade of friction brakes? Write short note on traction limit, friction ellipse and draw graph between friction coefficient and wheel slip ratio, give its significance?	10	2	2	2.2.1
Q4 A)	Enlist components of tyre and discuss? With the help of neat sketch write short note on "Double wishbone suspension" system?	10	3	1	1.2.2
B)	a) A car has pivot pins 137 cm apart, length of each track arm is 18 cm and track rod length 127 cm, is behind the front axle. Determine wheel base which will give true rolling for all wheels, when the car is turning so that input steering angle to inner wheel is 30°? b) Calculate torque required to obtain rack force of 20 N, if C factor is 0.05 mm/degree, motion transmission efficiency at gear box is half.	s 10	1	3	1.1.2
Q5 A)	Obtain final expression for equivalent weight of automobile; when it is accelerated through acceleration 'f' (consider inertia of slow and fast moving parts)?	10	1	2	2.1.2
B)	Explain working principle of hydraulic brake system with neat sketch generally used in heavy vehicle. Show all brake subsystem and its components?	10	3	2	1.2.2
Q6 A)	Explain how gear shift can be made smooth and reliable? In gear shifting with 5 stage gear box, draw graph between wheel speeds versus vehicle longitudinal speed? List down functions of suspension system and challenges for its design?	10	4	3	6 .1
B)	Write short note on i) camber, ii) caster and iii) toe with respect to wheel alignment? Give ideal and real prime mover characteristic with the help of necessary sketch? Give its physical significance?	10	2	1	1.2.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

1. Tech (much) sem VIII

END SEMESTER RE-EXAMINATION JULY 2022

Program: Mechanical Engineering

Course Code: PE-BTM 755

Course Name: Automobile Engineering

INSTRUCTIONS:

Duration: 3 hour

Maximum Points: 100

Semester: VIII

11/7/22

1. Attempt any five questions out of six questions.

2. Draw neat schematic diagrams wherever is necessary, highlight important points of answer.

3. Assume suitable data if necessary and mention it.

Q.No	Questions	Point s	CO	B	PI
Q1 A)	Give classification of buses based on their body shapes? List down various loads acting on the automobile frame?	10	- Trans	3	1.2.
B)	Obtain expression for maximum tractive effort available in case of front wheel drive and rear wheel drive?	10	3	2	2.1.
Q2 A)	Write short note on i) camber, ii) caster and iii) toe with respect to wheel alignment? Give ideal and real prime mover characteristic with the help of necessary sketch? Give its physical significance?	10	3	1	1.2.
В)	With the help of figure give criteria for selecting maximum possible range of speed for an automobile, when it's running on the level road? Derive final expression for thermal efficiency of petrol/otto air standard cycle with the help of necessary P-V and T-S diagram?	10	2	1	1.2.
Q3 A)	a) A car has pivot pins 159 cm apart, length of each track arm is 21 cm and track rod length 139 cm, is behind the front axle. Determine wheel base which will give true rolling for all wheels, when the car is turning so that input steering angle to inner wheel is 25°? b) Calculate torque required to obtain rack force of 25 N, if C factor is 0.05 mm/degree, motion transmission efficiency at gear box is half?	10	The same of the sa	3	2.1.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER RE-EXAMINATION JULY 2022

B)	Give significance of friction ellipse and draw graph between friction coefficient and wheel slip ratio, give its significance? Why disk brake performance is more reliable compared to drum brake performance? Explain it with the help of sketch? Define coefficient of friction sensitivity, brake fade of friction brakes?	10	2	2	2.2.
Q4 A)	With the help of a neat sketch, write a short note on the "Air suspension" system? Enlist components of tyre and discuss?	40	3	1	1.2.
B)	Estimate torque transmission capability by a two plate clutch, which is having average radius of 15 cm and it is coated using organic material (having coefficient of friction as 0.35)? After release of the clutch pedal, spring assembly applies 50 N of axial load on the clutch plate. Also estimate (all inertia loads are negligible and wheels rides without any slip) tractive effort available at road-tyre interface if N _{t1} = 0.5, N _d =0.5, mean wheel radius= 0.2 meters	‡ 0	1	3	1.1.
Q5 A)	Obtain final expression for equivalent weight of automobile; when it is accelerated through acceleration 'f' (consider inertia of slow and fast moving parts)?	10	1	2	2.1.
B)	Explain working principle of hydraulic brake system with neat sketch generally used in heavy vehicle. Show all brake subsystem and its components?	10	3	2	1.2.
Q6 A)	List down functions of suspension system and challenges for its design? Explain how gear shift can be made smooth and reliable? In gear shifting with 5 stage gear box, draw graph between wheel speeds versus vehicle longitudinal speed?	10	4	3	2.1.
B)	Give the working principle of Battery or Coil Ignition System with the help of a neat sketch? Write a short note on battery capacity rating?	10	2	1	1.2.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai 1400058

Al Year 1. Mal mass VIII

END SEM EXAM MAY2022	
DATE 18-05-2022	
Class: Final Year B.Tech.in Mechanical Engineering	SESSION:MORNING
Course No. 1 Control of the Charles of the Control	Semester : VIII
Course Name & Code- Supply Chain Management(PE-BTM734)	4-
Total Points 100	
NR	Time Allotted : 3hour

- 1.Que 1 is compulsory
- 2. Solve any 4 questions from remaining .
- 3. Assume Suitable Data wherever required

Q. NO	Question Statement	Points	Module	CO
Q1	Explore the salient features of the SCM model for Electric Vehicle Manufacturing industry. (Explanation should cover model of supply chain, supply chain players, flows of supply chain, customer order cycle, replenishment cycle, purchasing cycle, product design, packaging, transportation, warehousing, Use of RFID and Barcode, CPFR, Forecasting techniques, VMI, outsourcing, costing/ pricing issues, Reverse logistics, Supply Chain Performance Measurement) Consider the effects of Globalization of business, privatization and Liberalization of the economy. Suggest your creative ideas.		M1, M2, M3, M4, M5, M6, M7	CO
Q2A	The annual demand for a product is 64000 units. The buying cost per order is Rs10 and the estimated cost of carrying one unit in stock for a year is 20 percent. The normal price of the product is rs 10 per unit. However a supplier offers a quantity discount of 2 percent on an order of at least 1000 units at a time and a discount of 5 percent on an order of at least 5000 units. Suggest the most economic purchase quantity per order. Draw an Ishikawa Diagram to show the at least 20 causes of High inventory cost.	10	M3	CO2
	Explore the possibilities of using Industry 4.0 technologies across the entire supply chain of Electric Vehicle Manufacturing Company. Prepare the following table Name of Technology / Capability of Technology / Name Function across the supply chain / Impact of Technology on this function. Technologies may include IOT, IIOT, Simulation, Blockchain, Cloud Computing, Big Data	10	M6	CO4

540	a. NA(its and supplies to 5 estee C evaluates its suppliers o	m variet	v of orito	rio on fo	Morre Morre							
[10]		o varantos ito suppirors o	ni variot	y or criter	iia as io	mows.							
Ī													
	1.	Criterion Quality			Weight 20								
	2.	Price			25								
	3.	Credit facility			15								
	4.	Adherence to delive	erv sche		15		1						
	5.	Service Facility	ory borio		10								
	6.	Lead time			10			İ					
	7.	Response to sugges	tions %		5								
NĀ	has	four suppliers for its one				efer the							
		data and select the best so		angor oup	p1103. 1	color mic							
Sr	No.	Factor	Sup	pliers									
			A	В	Ç	D							
	1.	Quantity supplied	85	80	90	85							
		Quantity accepted	75	70	78	74	1						
<u> </u>		Price per unit	20	25	22		1						
						23	İ						
		Credit facilities in days	15	20	30	30							
	,	Delivery promised i weeks	in 6	6	6	6							
		Delivery made in weeks	8	6	7.2	6							
		Service facilitie Evaluation %	es 80	85	75	70							
· · · · · · · · · · · · · · · · · · ·		Lead time in week	2.5	2	3	2							
	9. F	Response to suggestion		88	85	90							
		/ ₀											
State	the gu	idelines for improving Su	upplier F	Relations	nin								
Poter	itial lo	cations A,B, and C have	the cos	st structur	re as sh	own in	10	M2					
		product is expected to se						1,17					
		omical location for ar											
	year.	omiour location for ar	ı expec	icu voit	mue Oi	2200							
Loc	cations	Fixed cost per year		Variab	le cos	t ner							
		, , , , , , , , , , , , , , , ,		unit		· Per							
-	· · · · · · · · · · · · · · · · · · ·	Rs. 30000		Rs.60									
A		Rs.60000		Rs.30									
В		C Rs.90000 Rs.20											
В			so determine the range of annual volume of production for which,										
B C	determ	ine the range of annual v	olume o	f product	ion for	which,		1					
B C Also cach c	of the l	ine the range of annual vocation A, B and C would	d be mos	st conven	ient.								
B C Also cach catate	of the l the Fa	ine the range of annual vocation A, B and C would ctors affecting the location	d be mos	st conven	ient.								
B C Also cach cach cacha	of the l the Fa ged Da	ine the range of annual vocation A, B and C would	d be mos on of a	st conven Manufact	ient. turing p	lant of	10	M2					

The strength of the strength of	Forecasting Tech	ate ar mique	na exp s used	oiain t in SCN	ne va 1.	rious types of erro	or in		
	A multi-hospital the independent for each hospital data, and predict All figures are in State the Supply	le) he							
Q5B					· · · · · · · · · · · · · · · · · · ·		10	M4, M5	COI
	Production facility Pi/ City demand Di	P1	P2	P3	P4	Demand of Oxygen			CO2
	D1	22	24	18	28	25			
	D2	16	17	22	13	14			
	D3	24	14	27	17	18			
	D4	19	23	17	16	17			
	D5	25	18	24	19	11			-
	Supply Capacity	18	14	23	30	85			
	production plant 18,14,23,30 (100 units are expected requirements of 2 respectively. The and cities are give of Transportation transportation prolutransportation products. Explain TPL MPL	s P1 0') un 1 to be 25, 14 transpoen in ta . Use olem. blem.	P2,P3, lits per shipped, 18, ortationable. NWCI Use LC Find p	day of da	rith professions of a profession (no. 1) and initiated the control of the control	dection company has a roduction capacity duct respectively. The D1,D2,D3,D4,D5 v (100°) units per er unit between factor PP to Find the Min C ial basic solution to tial basic solution to fuction in transportat	of nese with day ries Cost the the		
Q6A	Prepare the SWOT Chain.	[analy	sis of	Mumb	ai Met	ro Train Service Sup	ply 10	M1, M4	CO3, CO4
Q6B	Prepare the PESTI	on. 10	M2, M3, M4, M5	CO1 CO2					
Q7	Explain the follow Supply Cha Agile Supp CPRF Green Supp Green Pack	ain Per dy Cha olier D	formai iin	nce Me	Chain trics	Management	20	M1,M2, M3,M5, M7	CO1, CO2

•	B) Explain: Difference between Combined Cycle Power Generartion and	(10)	2	II,	6
	Combined Power Generation. Discuss: Combined Steam and Gas Turbine Power			V	
	Plant operation.				
7	A) State: Various gaseous emissions from thermal power plants. Explain:	(10)	3	I,	7
	Methods to reduce/remove any one of them In details with neat sketch			П	
	B) State: Various pollutants from thermal power plants and Explain: its harmful	(10)	3	I,	7
	effects on vegetation, animals, human beings and materials.			II	

BharativaVidvaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Re-Examination July 2022

B. Tech (Mery) Sem VIII

Program: B. Tech Mechanical

Course Code: PE-BTM756

Course Name: Renewable Energy Sources and Utilization

Duration: 3 Hours

Maximum Points: 100

Semester: VIII

Instructions:

1) Question number ONE is compulsory and solve any FOUR out of remaining SIX questions.

2) Use of steam table, refrigeration properties table and Gamma function table is permitted.

3) If required assume suitable data and justify the same.

Q.No.	Questions	Points	co	BL	Module
l(a)	Explain different types of wind turbine rotors.	5	1	1	4
1(b)	Discuss the use of selective surfaces.	5	1	1	2
1(c)	Discuss about side loss and bottom loss coefficients for liquid flat plate collectors. Write equations for these losses.	5	1	1	2
1(d)	Discuss the process of making multi-crystalline solar cell from copper indium gallium diselenide (CIGS) with neat sketch.	5	1	l	3
2(a)	Discuss about the World's production and reserves by considering followings: i) Fossil fuels ii) Water power iii) Nuclear power iv) Miscellaneous sources	08	1	1	1
2(b)	Calculate the overall loss coefficient for a flat-plate collector with one glass covers by calculation. (Without using empirical formula) Given the following data: Size of the absorber plate $(L_1 \times L_2)$:1.9 m × 0.9m Spacing between plate and the first glass cover (L) : 4 cm Spacing between first and the second glass cover (L) : 4 cm Plate emissivity (ε_p) :0.92 Glass cover emissivity (ε_c) :0.88 Collector tilt (β) :20° Mean Plate temperature (T_{pm}) :70°C	12	2	2	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examination July 2022

	Ambient	air ter	nperature	$\overline{(T_a)}$:	24°C					1
	Wind spe	$eed(V_c)$	$_{\infty})$: 2	2.5 m/s					
	Back ins	ulation	thickness	$\delta(\delta_b)$:	8 cm					
	Side insu	llation	thickness	(δ_s)		:	4 cm					
	Thermal	condu	ctivity of i	insulati	on (k_i)	: 0.0)5 W/m-F	ζ				
3(a)	Discuss	the pri	nciple of	workin	ıg of a so	lar cel	l in detai	l with nea	t 10	2	1	3
	sketch.											
3(b)	long-term wind pot discrete in represent the follow deviation $\vec{V} = 5.8 \text{ m}$ $\sigma = 3.5 \text{ m}$ Plot the	n data ential measur ative c wing v : n/s annu	on wind s and select rements o days for a values of	peed is suitab f hourl couple the ave	s not avail le wind m y wind s e of years erage win	able. In nachine peed a s. The nd spee	n order to e, a large re made measuren ed and th	g for which assess the number of over some nents yield the standard		2	2	4
4(a)	Discuss Conversion	the pron (O)	rinciple a TEC) syste	nd wo ems wi	orking of th neat so	hemat	ic and T-	al Energy s diagram cle OTEC		4	1	5
4(b)	following	situati L N T	ion: Location Month Take p for	: In : Jւ air = 1.	ndore uly ,20 kg/m ³ ,		•	ter for the		2	3	4
	which the	cut-ir	n speed is d is 90 kn	14 km/n/h. Th	h, the de	sign sp	eed is 36	achine for km/h and istribution				
	i i iiitcival	July	micival	Jury	micival	July	miervai	July		1		
			}			1	i	1		1		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examination July 2022

	00-02	0.6	12-14	3.5	24-26	10.8	36-38	2.6					
	02-04	0.5	14-16	7.7	26-28	3.6	38-40	1.1		-			
	04-06	1.1	16-18	8.3	28-30	7.4	40-42	0.7					
	06-08	1.2	18-20	9.2	30-32	7.0	42-44	0.2					
	08-10	0.9	20-22	11.3	32-34	3.7							
5(a)	with a r	neat sk	echanism tetch expl lso write	lain va	rious cor	nponen	ts of hy	droelect	ric	10	3	1	5
5(b)	Explain explain	how a	geothers at sketch t	nal en the flast	ergy. A	lso	10	4	1	6			
6(a)	Explain	the dov	vndraft bio		10	3	1	7					
6(b)	Explain the method of Bio-ethanol and Bio-diesel production i detail.										3	1	7
7(a)	every ni array, a over des if there	ght. It battery igned s has bee	ouse has a is propos storage so that it can no suns and batter	ed to n ystem a an mee shine d	neet the ind an invited one exturing the	equiren verter. T ra night	nent by u The whole 's require	sing a lessing a lession a	PV n is ven	10	2	2	3
	Given: (i) Solar radiation is available for an average of six hour daily and the average hourly global radiation flux incident on the array is 650 W/m ² ,												
	(ii) Battery rating = 12V; 120 Ah, Depth of discharge = 0.7, Charging and discharging efficiency = 0.9												
	(iii) Inve	erter eff	ficiency at	full lo	ad = 0.85								
			dule area per cent					convers	ion				
	Draw ne									10		1	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examination July 2022

1. Relationship between Nusselt and Rayleigh numbers.

 $Nu_L = 1 ; Ra_L \cos \beta < 1708$

$$Nu_L = 1 + 1.446 \left(1 - \frac{1708}{Ra_L \cos \beta} \right)$$
: 1708 < $Ra_L \cos \beta$ < 5900

 $Nu_L = 0.229 (Ra_L \cos \beta)^{0.352}$; $5900 \le Ra_L \cos \beta \le 9.23 \times 10^4$

 $Nu_L = 0.157 (Ra_E \cos \beta)^{0.285}; 9.23 \times 10^4 < Ra_L \cos \beta < 10^6$

2. Properties of dry air.

Table A 4.2 Properties of dry air at atmospheric pressure

T ====================================	ρ kg/m³	C _{ji} kJ/kg-K	$\mu \times 10^6$ N-s/m ²	k W/m-K	Pr	$\frac{v \times 10^6}{\text{m}^2/\text{s}}$
0	1.293	1.005	17.2	0.0244	0.707	13.28
10	1.247	1.005	17.7	0.0251	0.705	14.16
20	1.205	1.005	18.1	0.0259	0.703	15.06
30	1.165	1.005	18.6	0.0267	0.701	16.00
40	1.128	1.005	19.1	0.0276	0.699	16.96
50	1.093	1.005	19.6	0.0283	0.698	17.95
60	1.060	1.005	20.1	0,0290	0.696	18.97
70	1.029	1.009	20.6	0.0297	0.694	20.02
80	1.000	1.009	21.1	0.0305	0.692	21.09
90	0.972	1.009	21.5	0.0313	0,690	22.10
100	0.946	1.009	21.9	0.0321	0.688	23.13
120	0.898	1.009	22.9	0.0334	0.686	25.45
140	0.854	1.013	23.7	0,0349	0.684	27.80
160	0.815	1:017	24.5	0.0364	0.682	30.09
180	0.779	1.022	25.3	0.0378	0.681	32.49
200	0.746	1.026	26.0	0.0393	0.680	34.85
250	0.674	1.038	27.4	0.0427	0.677	40.61
300	0.615	1.047	29.7	0.0461	0.674	48.33
350	0.566	1.059	31.4	0.0491	0.676	55.46
400	0.524	F.068	33.0	0.0521	0.678	63 .09
500	0.456	1.093	36.2	0.0575	0.687	79. 38
600	0,404	1.134	39.1	0.0622	0.699	96.89
700	0.362	1.135	41.8	0.0671	0.706	115:4
800	0.329	1.156	44.3	0.0718	0.713	134.8
900	0.301	1,172	46.7	0.0763	0.717	155.1
1000	0.277	1.185	49.0	0.08 07 :-	0.719	177.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-Examination July 2022

		Gamma	Function	Table Fo	r (15ps2	1	
р	Γ(p)	р	Г(р)	p	Γ(p)	р	Γ(p)
1.00000	1.00000	1.25000	0.90640	1.50000	0.88623	1.75000	0.91906
11.01000	0/99433	126000	DELLEM	3.51 000	0/88659	1.76000	0.92137
1.02000	0.98884	1.27000	0.90250	1.52000	0.88704	1.77000	0.92376
4303000	0.982152	1.28000	0.900/2	1.53000	0.8 8757	1.78000	0.92624
1.04000	0.97844	1.29000	0.89904	1.54000	0.88818	1.79000	0.92877
a demo	0.97350	1230000	0.89747	9.55000	0.88887	#.200000	0.93138
1.06000	0.96874	1,31000	0.89600	1.56000	0.88964	1,81000	0.93408
1401000	0.96415	1.32000	0.89464	1.5000	0.89049	1282000	0.93685
1.08000	0.95973	1.33000	0.89338	1.58000	0.89142	1.83000	0.93969
9:09000	0.95546	1.34000	0.89222	1.59000	0.89243	1.84000	0.94260
1.10000	0.95135	1.35000	0.89115	1.60000	0.89352	1.85000	0.94561
1211000	0.94740	120000	D#89018	1.61000	0:89468	3,86000	0.94869
1.12000	0.94359	1.37000	0.88931	1.62000	0.89592	1.87000	0.95184
1,13000	0.93993	438000	0.88854	1.63000	0.89724	7.88000	0.95507
1,14000	0.93642	1.39000	0.88785	1.64000	0.89864	1.89000	0.9583B
1.15000	0,93304	1.40000	D:88726	1.65000	Ø90012	19 0000	0.96477
1.16000	0.92980	1.41000	0.88676	1.66000	0.90167	1.91000	0.96520
1,17000	0.92670	1,42000	0.88636	1.67000	0,90330	1.92000	0.96877
1.18000	0.92373	1.43000	0.88604	1.68000	0.90500	1.93000	0.97240
1019000	0.92089	1.44000	0.8858	1,69000	020678	1.94000	0.97610
1.20000	0.91817	1.45000	0.88566	1.70000	0.90864	1.95000	0.97988
M.21000	0,91558	1.45000	0.88560	11100	JF9/1057	7:96000	0.98374
1.22000	0.91311	1.47000	0.88563	1.72000	0.91258	1.97000	0.98768
1,23000	0.291 075	1.48000	0-88575	1.73006	0.91467	1.98000	0.99171
1.24000	0.90852	1.49000	0.88595	1.74000	0.91683	1.99000	0.99581
1:25QD0	0.90640	1.50000	0.88623	1.75000	0.91906	2.00000	1.00000 5
	THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS	运用中的现在时间	TENEDESCE SE			WHANTAN	A-AAAAAA S

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May 2022

hal Mr. B. Tem (Mera) Lung VIII

Duration: 3 Hours

Maximum Points: 100

Semester: VIII

Program: B. Tech Mechanical

Course Code: PE-BTM756

Course Name: Renewable Energy Sources and Utilization

Instructions:

1) Question number ONE is compulsory and solve any FOUR out of remaining SIX questions.

2) Use of steam table, refrigeration properties table and Gamma function table is permitted.

3) Assume suitable data and justify the same.

Q.No	Questions	Points	co	BL	PI
l(a)	Compare about Worlds and India's production and reserves of wind energy sources.	05	CO1	1	1.4.1
1(b)	Explain the working principle of photovoltaic solar cell.	05	CO1	3	1.4.1
1(c)	A geothermal aquifer supplies hot water with wellhead temperature of 75°C at the flow rate of 30 liters/sec. The heat energy is used to supplement the direct heating unit above datum temperature of 40°C. If the geothermal heat is used for 170 days each year, how much oil is saved annually if the overall combustion efficiency of oil burner is 75%. Assume the heat of combustion of oil is 4.184×10^7 kJ/tonnes	05	CO4	3	2.4.1
1(d)	A mountain stream flows over a terrain where micro-hydro power plant is possible where an effective head of 70 m be built and a flow rate of $0.6 \text{ m}^3/\text{s}$ can be maintained how much power can the hydro power plant can generate and what population can be supported by this energy, if the per capita electricity consumption in India is 780 kWh annually. Assume plant efficiency (η) of 80 percent.	05	C03	3	2.4.1
2(a)	Calculate the overall loss coefficient for a flat-plate collector with one glass covers by calculation. (Without using empirical formula) Given the following data: Size of the absorber plate $(L_1 \times L_2)$:3 m × 2m Spacing between plate and the first glass cover (L) : 3 cm Spacing between first and the second glass cover (L) : 3 cm Plate emissivity (ε_p) : 0.92 Glass cover emissivity (ε_c) : 0.88 Collector tilt (β) : 20°	12	CO2	3	2.4.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May 2022

	Mean Plate temperature (T_{pm}) : 75°C				
	Ambient air temperature (T_a) : 32°C				
	Wind speed (V_{∞}) : 3 m/s				
	Back insulation thickness (δ_b) ; 8 cm		1		
	Side insulation thickness (δ_s) : 4 cm		1		
	Thermal conductivity of insulation (k_i) : 0.05 W/m-K				
2(b)	Discuss the effect of following parameters on the performance of liquid flat plate collector.	08	COI	1	1.4.1
	(a) Selective surface		1		
	(b) Number of covers				
	(c) Spacing between absorber plate and covers				(
	(d) Collector tilt	10	1		2.4.1
3(a)	A photovoltaic cell has an open circuit voltage of 0.6 V and a short circuit current of 300 A/m ² at a cell temperature of 40°C. Calculate the voltage and current density that maximizes the power of the cell. What would be the corresponding maximum power output per unit cell area?	10	CO2	3	2.4.1
	Given that charge of an electron, $e = 1.602 \times 10^{-19}$ J/V and Boltzmann constant, $k = 1.381 \times 10^{-23}$ J/K				
3(b)	Classify the water turbines. Write in detail Kaplan propeller turbine and Francis propeller turbine with neat sketch of each.	10	CO2	3	2.4.1
4(a)	A residential house has a power requirement of 800 W for 5 hours every night. It is proposed to meet the requirement by using a PV array, a battery storage system and an inverter. The whole system is over designed so that it can meet one extra night's requirement even if there has been no sunshine during the day. Calculate the number of PV modules and batteries required.	10	CO3	2	1.4.1
	Given: (i) Solar radiation is available for an average of six hours daily and the average hourly global radiation flux incident on the array is 750 W/m^2 ,				
	(ii) Battery rating = 12V; 120 Ah, Depth of discharge = 0.7, Charging and discharging efficiency = 0.9				
	(iii) Inverter efficiency at full load = 0.85				
	(iv) Use PV module area used is 119.1 cm x 53.3 cm, use conversion efficiency of 10 per cent for given global radiation				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May 2022

4(b)	What is g	eothern ver plan	nal energy? t with neat	Explai	n dry stear	n powe	er pla n t an	d flash	10	CO4	1	1.4.1
5(a)	which the	cut in s	al energy c peed is 10 l 0 kmph for	kmph, tl	he design s	peed is	machine fo 28 kmph ai	r nd the	10	CO2	3	2.4 .2
		Lo	cation	: Kanc	lla Port							
		Me	onth	: Nove	ember							
		Та	ke density	for air,	o = 1.20 kg	$/\mathrm{m}^3$.						
	Interval	Nov	Nov									
	00	4.6	10-12	8.1	22-24	6.1	34-36	0.3				
	00-02	4.4	12-14	9.7	24-26	4.2						
	02-04	4.8	14-16	10.2	26-28	2.5						
	04-06	4.5	16-18	9.0	28-30	1.3						
	06-08	6.5	18-20	9.3	30-32	0.6	And of the second *					
	08-10	7.6	20-22	6.0	32-34	0.3						
5(b)	Explain the	ne meth	od of Bio-e	thanol a	and Bio-die	sel prod	duction in o	letail.	10	CO4	1	1.4.1
6(a)	the working sea water Make an in the even the ammo	Calculate the efficiency of closed cycle OTEC system using ammonia as the working fluid and installed at a location where the warm and cold sea water streams are at temperature of 35°C and 5°C respectively. Make an allowance of about 5°C for the temperature difference required in the evaporator and condenser for transferring heat, and assume that the ammonia is evaporating at 30°C and condensing at 10°C. Take the isentropic efficiencies of the turbine and pump to be 90 and 80 per cent							10	CO3	3	2.4.1
6(b)	Draw ne	Draw neat schematic diagram of downdraft gasifier and explain th biomass gasification process in detail.									1	1.4.1
7(a)	Calculate	Calculate the main dimension of the rotor of a multi blade wind machine operating at a design wind speed of 25 kmph. The machine operates a water pump having a capacity of 5.1 m ³ /h and a lift of 9 m.									2	1.4.1
	water nur	ทก ทลงม	ng a cabacu	ו.כ.וט עו	m / manu	a IIII OI	7 111.					

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination May 2022

1. Relationship between Nusselt and Rayleigh numbers.

 $Nu_L = 1 ; Ra_L \cos \beta < 1708$

$$Nu_L = 1 + 1.446 \left(1 - \frac{1708}{Ra_L \cos \beta} \right); 1708 < Ra_L \cos \beta < 5900$$

 $Nu_L = 0.229 (Ra_L \cos \beta)^{0.252}$; $5900 < Ra_L \cos \beta < 9.23 \times 10^4$ $Nu_L = 0.157 (Ra_L \cos \beta)^{0.283}$; $9.23 \times 10^4 < Ra_L \cos \beta < 10^6$

2. Properties of dry air.

Table A 4.2 Properties of dry air at atmospheric pressure

$\frac{T}{C}$	ρ kg/m³	C _p kJ/kg-K	$\mu \times 10^6$ N-s/m ²	k W/m-K	Pr	$v \times 10^6$ m^2/s
	1.293	1,005	17.2	0.0244	0.707	13.28
0		1.005	17.7	0.0251	0.705	14.16
10	1.247	1,005	18.1	0.0259	0.703	15.06
20	1.205	L005	18.6	0.0267	0.701	16.00
30	1.165	1.005	19.1	0.0276	0.699	16.96
40	1.128		19.6	0.0283	0.698	17.95
50	1.093	1.005	20.1	0.0290	0.696	18.97
60	1.060	1.005	20.6	0.0297	0.694	20.02
70	1.029	1,009		0.0305	0.692	21.09
80	1.000	1.009	21.1	0.0313	0.690	22.10
90	0.972	1,009	21.5	0.0321	0.688	23:13
100	0.946	1,009	21.9	0.0334	0.686	25.45
120	0.898	1.009	22.9	0.0349	0.684	27.80
140	0.854	1.013	23.7	0.0364	0.682	30.09
160	0.815	1.017	24.5		0.681	32.49
180	0.779	1.022	25,3	0.0378	0.680	34.85
200	0.746	1.026	26.0	0.0393	0.677	40.6
250	0.674	1.038	27.4	0.0427	0.674	48.33
300	0.615	1.047	29.7	0,0461	0.676	55.46
350	0.566	1.059	31.4	0.0491		63.0
400	0.524	1:068	33.0	0.0521	0.678	79.3
500	0,456	1:093	36.2	0.0575	0.687	96.8
600	0,404	1.114	39.1	0.0622	0.699	
700	0.362	1.135	41.8	0.0671	0.706	115.
800	0.329	1.156	44.3	0.0718	0.713	134.
900	0.301	1.172	46.7	0.0763	0.717	155.
3000	0.277	1.185	49.0	0.0807	0.719	177.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER Examination - MAY 2022 Examinations

Final ys. D. Tech (Meils)

Program: BTECH (MECH.ENGG.)

Course Code: OE BTM891

Course Name: BIG DATA ANALYTICS

Duration: 3hr

Maximum Points: 100

Semester: VIII

Solve any five questions out of seven

Figures to the right indicate full marks

Assume Suitable data wherever necessary

Q.No.	Questions	Points	СО	BL	PI
Q.1 (a)	Explain evolution of BIG DATA ANALYTICS along with a figures.	[10]	1,2	2	3.2.1
(b)	Explain Cloud Computing along with its features, advantages & applications	[10]	2,3	2	3.2.1
Q.2 (a)	Explain HADOOP Ecosystem & explain the functions of technology components in HADOOP in brief.	[10]	2,3	3	5.1.2
(b)	Explain the working of MAPREDUCE with example? Explain parallel processing in MAPREDUCE?	[10]	2,4	2	3.2.1
Q.3 (a)	What is YARN? Explain its & advantages? Explain components of YARN with neat figures?	[10]	1,3	2	3.2.1
(b)	Explain PIG architecture with neat sketches?	[10]	2,3	2	3.2.1
Q.4 (a)	Explain many to one and one to many correspondence in MONGODB NOSQL database with the help of an example	[10]	2,3	2	3.2.1
(b)	Explain the various Centrality Algorithms (Graph Analytics) in NEO4J with an example	[10]	3,4	2	3.2.1
Q.5 (a)	Explain the concept & significance of Polyglot Persistence with the help of an example? Draw neat figures for the same	[10]	3,4	3	5.1.2
(b)	Explain the concept of CAP theorem with neat figures? Also explain?	[10]	3,4	3	5.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER Examination - MAY 2022 Examinations

Q.6 (a)	What are the problems with RDBMS in storing image data? How they are overcome using NOSQL databases?	[10]	2,4	3	5.1.2
(b)	Compare PIG, HIVE & HBASE? Also explain Graph NOSQL database with neat figure?	[10]	2,4	2	3.2.1
Q.7 (a)	Explain the HBASE architecture components?	[10]	2	3	5.1.2
(b)	Explain YARN Commands with their Syntax & use? Also explain HDFS architecture?	[10]	2,3	2	3.2.1
	**************************************	*****	***		I

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

23/5/22

Duration: 03 Hrs. Maximum Points: 100

Semester: VIII

END SEMESTER EXAMINATION MAY 2022

Program: Final year B. Tech. (Mery) Sem VIII
Course Code: OE-BTM712

Course Name: Introduction to Research Methodology

Notes:

1. Attempt any FIVE questions

2. Each question carries equal marks

3. Assume suitable data wherever necessary and justify the same

Q.No.	Questions	Points	CO	BL	PI
	a) What are the objectives of research?b) Differentiate between qualitative and quantitative approaches.				
1	c) State and explain characteristics of research.d) How would you define a technical research? What are the major components of good research study?	20	1	2	4.4
1	a) The training manager at ABC Corporation has asked you to identify the kind of training programmes that should be offered to the young recruits who have joined as graduate trainees and are to be imparted five additional general technical programmes along with their specific job training modules. The trainees are a mixed bunch of engineering and management graduates.	10			
2	 Formulate your research problem. State your research objectives Classify research design giving appropriate examples. 	10	1	2	4.4
3	a) Explain the criteria used for systematic review.b) Describe steps in the Literature Review Process.	10 10	1		3.5
,	 a) Distinguish between secondary and primary methods of data collection methods. Is it possible to use secondary data methods as substitutes of primary methods? Justify your answer with suitable illustrations. b) You have been assign a task of carrying out an FGD for a new radio station FM 42.0 Radio Chilz. The channel is meant for generation Y (those born after 1990). You need to get information from the assigned group on: What should be the punch line? What kind of programs should you air? 	10			
4	• What would be the requirement if you hire RJ's (Radio Jockey)?	10	3	3	2.5

	Write down the discussion guide for the following study. What elements should the moderator be careful about? How will he screen the respondents?				
	a) Use least square regression to fit a straight line to		-	+	-
	X 1 2 3 4 5 6 7 8				
į	Y 1 1.5 2 3 4 5 8 10				
	Along with the slope and intercept, compute the	10			
	standard error of the estimate and the correlation				
	coefficient.				
	b) Given the data:				1
	28.65 26.55 26.65 27.65 27.35 28.35 26.85				1
	28.65 29.65 27.85 27.05 28.25 28.85 26.75				
	27.65 28.45 28.65 28.45 31.65 26.35 27.75				
	29.25 27.65 28.65 27.65 28.55 27.65 27.25				
	Determine (a) mean, (b) standard deviation (c)				
5	variance (d) coefficient of variation (d) the 90%				4.4
3	a) In certain food experiment to compare two types of	10	2	3	.3
	, and the second				
	baby foods A and B, the following results of increase in weight (lbs) we observed in 8 children as follows.				
		1.0			
	Food A (x) 49 53 51 52 47 50 52 53 Food B (y) 52 55 52 53 50 54 54 53	10			
	Examine the significance of increase in weight of children				
	due to food B.				
	b) A group of 5 patients treated with medicine. A is of				
	weight 42,39,38,60 &41 kgs. Second group of 7				
	patients from the same hospital treated with medicine	10			
	B is of weight 38, 42, 56, 64, 68, 69, & 62 kgs. Find	10			4.5
6	whether there is any difference between medicines?		2	4	.1
U	a) Describe the layout of technical report writing.	10			
	b) State precautions to be taken while preparing a				10.
7	research report.	10	4	3	6.1

Table 1: Area Under Normal Curve

An entry in the table is the proportion under the entire curve which is between z=0 and a positive value of z. Areas for negative values for z are obtained by symmetry.

Areas of a standard normal distribution

			Areas	of a standa	AG INA HIA	J UESCH TIPE	DOTA TOTAL	u-management		
\$.0	0.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
2 3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
1	.2580	.2611	.2642	.2673	.2903	.2734	.2764	.2794	.2823	.2852
.8	.2881	2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
9	3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
11	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	3925	.3944	.3962	.3980	.3997	.4015
12	.4032	.4049	.4066	.4082	.4099	.4115	.4131	4147	.4162	.4177
1,4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
13	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
13	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
19	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	4964
27.	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	4979	.4979	.4980	4981
29	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	4986
3.0	4987	.4987	4987	.4988	.4988	.4989	.4989	.4989	.4990	4990

 Table 2: Critical Values of Student's t-Distribution

	******	Level of si	gnificance for	wo-tailed test			
d.f.	0.20	0.10	0.05	0.02	0.01	d.f.	
		Level of si	gnificance for o	one-tailed test			
e =	0.10	0.05	0.025	0.01	0.005		
1	3.078	6.314	12.706	31.821	63.657	1	
2	1.886	2.920	4.303	6.965	9.925	2	
3	1.638	2.353	3.182	4.541	5.841	3	
4	1.533	2.132	2.776	3.747	4.604	4	
5	1.476	2.015	2.571	3.365	4.032	5	
6	1.440	1.943	2.447	3.143	3.707	6	
7	1.415	1.895	2.365	2.998	3.499	7	
8	1.397	1.860	2.306	2.896	3.355	8	
9	1.383	1.833	2.262	2.821	3.250	9	
10	1.372	1.812	2.228	2.764	3.169	10	
11	1.363	1.796	2.201	2.718	3.106	11	
12	1.356	1.782	2.179	2.681	3.055	12	
13	1.350	1.771	2.160	2.650	3.012	13	
14	1.345	1.761	2.145	2.624	2.977	14	
15	1.341	1.753	2.731	2.602	2.947	15	
16	1.337	1.746	2.120	2.583	2.921	16	
17	1.333	1.740	2.110	2.567	2.898	17	
18	1.330	1.734	2.101	2.552	2.878	18	
19	1.328	1.729	2.093	2.539	2.861	19	
20	1.325	1.725	2.086	2.528	2.845	20	
21	1.323	1.721	2.080	2.518	2.831	21	
22	1.321	1.717	2.074	2.508	2.819	22	
23	1.319	1.714	2.069	2.500	2.807	23	
24	1.318	1.711	2.064	2.492	2.797	24	
25	1.316	1.708	2.060	2.485	2.787	25	
26	1.315	1.706	2.056	2.479	2.779	26	=
27	1.314	1.703	2.052	2.473	2.771	27	
28	1.313	1.701	2.048	2.467	2.763	28	
29	1.311	1.699	2.045	2.462	2.756	29	
Infinity	1.282	1.645	1.960	2.326	2.576	Infinity	